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Abstract

Clutch size and egg mass are life history traits that have been extensively studied in

wild bird populations, as life history theory predicts a negative trade-off between

them, either at the phenotypic or at the genetic level. Here, we analyse the genomic

architecture of these heritable traits in a wild great tit (Parus major) population, using
three marker-based approaches – chromosome partitioning, quantitative trait locus

(QTL) mapping and a genome-wide association study (GWAS). The variance explained

by each great tit chromosome scales with predicted chromosome size, no location in

the genome contains genome-wide significant QTL, and no individual SNPs are associ-

ated with a large proportion of phenotypic variation, all of which may suggest that

variation in both traits is due to many loci of small effect, located across the genome.

There is no evidence that any regions of the genome contribute significantly to both

traits, which combined with a small, nonsignificant negative genetic covariance

between the traits, suggests the absence of genetic constraints on the independent

evolution of these traits. Our findings support the hypothesis that variation in life his-

tory traits in natural populations is likely to be determined by many loci of small

effect spread throughout the genome, which are subject to continued input of variation

by mutation and migration, although we cannot exclude the possibility of an addi-

tional input of major effect genes influencing either trait.
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Introduction

Clutch size and egg mass are reproductive traits with

strong links to fitness in natural bird populations (Ben-

nett & Owens 2002; Krist 2011). Life history theory pre-

dicts that when the amount of resources dedicated to a

reproductive event is limited, individuals can invest in a

either few large eggs or many small eggs (Smith &

Fretwell 1974; Bernardo 1996), and across species, there

appears to be such a trade-off (Blackburn 1991).

However, the relationship within species is less clear,

with evidence for both negative and positive relation-

ships (Christians 2002). Positive relationships could

result from variation in individual quality, such that

high-condition individuals produce large clutches of

large eggs, while poor-condition individuals produce

small clutches of small eggs (van Noordwijk & de Jong

1986; Blackburn 1991). Of particular interest is whether

an observed correlation, whether positive or negative,

has a genetic basis, which could influence how the two

traits (and the relationship between them) are able to

respond to selection. There is some evidence of a genetic

trade-off between offspring number and size in fish

(Snyder 1991), reptiles (Sinervo & Doughty 1996) and
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mammals (Roff 1992; Mappes & Koskela 2004; Wilson

et al. 2005) (although no evidence of genetic trade-offs

was found in a number of other studies, see Brown &

Shine 2007; Gall & Neira 2004; Schroderus et al. 2012). In

birds, a genetic covariance between clutch size and egg

mass has previously only been estimated for great tits

(Garant et al. 2008).

Great tits, Parus major, are described as an ‘ecologi-

cal model organism’ owing to a wealth of studies of

their behaviour, ecology and evolutionary biology in

numerous (>12) populations across their range (Visser

et al. 2003). Their extensive Eurasian distribution,

abundance and amenity to using nest boxes have facil-

itated their choice as a field study organism. One

long-term study of the species is located in Wytham

Woods, near Oxford, which has been intensively

monitored since the 1960s, with life history data and

social pedigree relationships recorded for most indi-

viduals [see, for example, McCleery et al. (2004) and

references therein]. Clutch size and egg mass in the

Wytham great tits have been the focus of a number of

pedigree-based quantitative genetic studies. It is

known that both traits have moderate heritabilities

(0.26–0.34 for clutch size and 0.40–0.51 for egg mass:

Garant et al. 2008; McCleery et al. 2004; Quinn et al.

2006) and that there is a significant negative pheno-

typic correlation [� standard error (SE)] of �0.070

(0.013) between the two, which is at least partly dri-

ven by a significant genetic component [genetic corre-

lation �0.210 (0.100): Garant et al. 2008].

Recently, genomic resources have become available for

the great tit, including a ‘SNP chip’ with 9193 SNPs (van

Bers et al. 2012), a genetic linkage map (K. van Oers,

A. W. Santure, I. De Cauwer, N. E. M. van Bers, R. P. M.

A. Crooijmans, B. C. Sheldon, M. E. Visser, J. Slate & M.

A. M. Groenen, in preparation), a description of the

pattern of linkage disequilibrium (I. De Cauwer, A. W.

Santure, K. van Oers, N. E. M. van Bers, R. P. M. A.

Crooijmans, B. C. Sheldon, M. E. Visser, J. Slate & M. A.

M. Groenen, in preparation) and ongoing high-coverage

whole-genome sequencing (M. A. M. Groenen, personal

communication). The availability of markers distributed

throughout the great tit genome gives the opportunity to

conduct marker-based quantitative genetic approaches

that complement ‘classical’ quantitative genetic studies.

This offers the possibility of dissection of the genetic

architecture of traits (Slate et al. 2010), that is, to investi-

gate where additive genetic variation is located in the

genome, and whether a trait is influenced by many genes

of small effect distributed throughout the genome (po-

lygenicity) or by a few genes of major effect (oligogenici-

ty). Such questions have, in the past, been addressed by

quantitative trait locus (QTL) scans and genome-wide

association studies (Mackay 2001; Stinchcombe & Hoek-

stra 2008; Flint & Mackay 2009; Slate et al. 2010). How-

ever, one disadvantage of such approaches is that in the

absence of significant results, one cannot discriminate

between (i) a lack of power to detect loci of large effect in

an oligogenic trait and (ii) a polygenic trait with loci of

undetectably small effect distributed throughout the gen-

ome. A solution that provides an explicit test of polyge-

nicity is to partition additive genetic variance for

complex traits across genomic regions, for example

across individual chromosomes. In particular, if the addi-

tive genetic contribution of a region scales with its size

(and/or gene content), this provides strong support for a

polygenic basis to the trait. This approach has been

widely applied in human genetics (Visscher et al. 2007;

Yang et al. 2011b) and in animal breeding (Hayes et al.

2010). A recent study has adapted this approach to com-

plex pedigree structures encountered in studies of wild

populations and applied it to the dissection of the genetic

architecture of a morphological trait in the Wytham great

tits (Robinson et al. 2013).

In this study, a large pool of SNP markers was

used to dissect the genetic architecture of two female

life history traits, clutch size and egg mass, and the

genetic basis of the relationship between them, using

three different approaches: (i) the variance explained

by each great tit chromosome was estimated from the

covariance between phenotypic similarity and sharing

of SNP alleles and compared with chromosome size to

determine whether each chromosome’s contribution

scales with size; (ii) QTL scans were performed to

search for regions of the genome contributing to trait

variation between individuals; and (iii) SNPs across

the genome were tested for association with pheno-

typic variation.

Methods

Study population

Great tits have been studied at Wytham Woods, near

Oxford, United Kingdom (UK) (51°46′N, 1°20′W), since

the 1940s, with nest boxes first erected in 1947 (Lack

1964; Savill et al. 2010). Since the early 1960s, a wide

range of phenotypic traits have been recorded, includ-

ing morphological traits, life history information and

social pedigree relationships [see, for example, McCle-

ery et al. (2004) and references therein]. Blood has been

collected for a limited subsample of birds between 1985

until 2005 and for most birds since 2005.

Genotyping

A total of 2644 individuals were successfully genotyped

on an Illumina iSelect BeadChip (‘SNP chip’); 7203 of
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the 9193 SNPs included on the SNP chip were polymor-

phic in the study population (see van Bers et al. 2012

for a full description of methods and outcomes).

Pedigree and identity checking

Because pedigree errors can bias estimates of heritabil-

ity (Charmantier & Reale 2005), the pedigree links

among the 2644 genotyped individuals were checked

using a set of molecular-based approaches (see K. van

Oers, A. W. Santure, I. De Cauwer, N. E. M. van Bers,

R. P. M. A. Crooijmans, B. C. Sheldon, M. E. Visser, J.

Slate & M. A. M. Groenen, in preparation). A total of

2497 individuals of confirmed identity were included in

further analyses.

Genetic maps

A genetic linkage map based on 1656 individuals from

Wytham Woods was constructed for 32 of the 39 great

tit chromosomes (1–15, 17–24, 26–28, 1A, 4A, 25A, 25B,

LGE422 and Z; a number of very small microchromo-

somes, including chromosome 16, could not be mapped

as no SNPs were genotyped on these chromosomes)

(described in K. van Oers, A. W. Santure, I. De Cauwer,

N. E. M. van Bers, R. P. M. A. Crooijmans, B. C. Shel-

don, M. E. Visser, J. Slate & M. A. M. Groenen, in pre-

paration). The different downstream analyses required

linkage maps with different marker densities. Therefore,

the final maps were as follows: (i) for QTL mapping, a

‘framework’ linkage map of 1674 markers, covering

1893 cM, where markers were placed in map positions

where the best order was 1000 times [logarithm of odds

(LOD) = 3] more likely than any other order, and (ii)

for GWAS and chromosome partitioning, a set of 5591

‘chromosome-assigned’ markers, which included 4878

markers placed in a ‘parsimonious’ linkage map

[1916 cM, where the best marker order was 1.002 times

(LOD = 0.001) more likely than any other order], plus

an additional 713 markers that were linked to markers

in the parsimonious map and could be assigned a puta-

tive mapping position (in cM) based on comparative

genomics with their predicted zebra finch genome

location (see Appendix S1).

Clutch size and egg mass phenotypes

Data were available for 15 219 breeding events in

Wytham Woods from 1958 to 2011. After filtering the

data to remove nests that had been experimentally

manipulated, second clutches and clutches for which the

female’s (i.e. mother of the nest) age was unknown,

10 532 records remained. This data set included the num-

ber of eggs, total mass of the eggs and the lay date of the

nest; the three phenotypes were defined as follows:

1 number of eggs: the total number of eggs laid by a

single female in a single reproductive attempt. Rare

cases with more than one female inferred to be laying

in the same nest (occurrence of more than one egg in

a 24-h period) were excluded, as were (more

frequently) clutches that could not be confirmed to be

complete (defined as a clutch size recorded in a nest

where incubation had begun).

2 total mass of the eggs: the fresh mass of a sample of

between 1 and 13 eggs weighed before incubation

had begun. The mean number of eggs measured per

nest was 4.11 (standard deviation = 1.42, median = 4).

3 lay date of the nest: the date on which the first egg of a

clutch was laid, inferred, if necessary, by back-calcu-

lation based on the assumption of one egg laid per

day.

To account for year-to-year variation, the number of

eggs, mean egg mass and lay date of the nest were all

standardized by the mean and standard deviation each

year and will hereafter be referred to as ‘clutch size’,

‘egg mass’ and ‘lay date’, respectively.

If available, clutch size, egg mass and lay date were

extracted for all genotyped females for each year

(i.e. each reproductive event) and merged with a num-

ber of environmental and individual variables as indi-

cated in Appendix S2. The effects and significance of

these variables on clutch size and egg mass were tested

in two ways. First, a linear model was constructed

using the ‘lm’ function in R (R Development Core Team

2012) and the significance of fixed terms tested using

the ‘dropterm’ function to identify variables with a sig-

nificant effect on clutch size or egg mass. Second, the

significance of the random effects was tested by con-

structing a linear mixed model with and without each

of the random effects, using the ‘lmer’ function in the

lme4 package (Bates et al. 2011) in R. The log likelihood

of the models was compared with a chi-squared statistic

with one degree of freedom to assess the significance of

each random effect.

All significant terms were included in subsequent

models, with the nest box the eggs were laid in and the

mother’s identity (i.e. permanent environment effect) fit-

ted as random effects and female age, the section within

Wytham Woods, the area surrounding the nest box, the

altitude of the nest box and the lay date of the nest

fitted as fixed effects (see Appendix S2).

A total of 1610 clutch size measurements for 969

genotyped individuals and 1424 egg mass measure-

ments for 902 genotyped individuals were available. All

egg mass records also had clutch size measured.
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Partitioning genetic variation across chromosomes

Chromosome partitioning was performed as described

in Robinson et al. (2013). Under the null hypothesis of a

polygenic additive genetic model, a large number of

locations in the genome each contribute a small amount

to the overall variance. The total genetic variance can

therefore be partitioned as the sum of the effects of

many markers across the genome in a mixed model

framework (VanRaden 2008). To estimate the contribu-

tion of all SNP effects to the overall variance, the gen-

ome-wide sharing of SNP alleles (genome-wide

relatedness, GWR) between two individuals was

included as a random effect where the phenotype (y) is

partitioned as

y ¼ Xbþ Zuþ e

where X and Z are incidence matrices relating trait

records to vectors of fixed effects b and random effects u,

respectively, and e is a vector of residual effects, where

marker information is included in the random effects.

The genome-wide relationship matrix (GWRM)

approach described in Robinson et al. (2013) is similar to

that employed in human genetics to partition additive

genetic variance for complex traits across genomic

regions (reviewed in Powell et al. 2010; Yang et al. 2011a),

but is applicable to data sets with complex pedigrees and

close relatives. Here, Method 3 from Robinson et al.

(2013) was used to estimate G3, a matrix of marker relat-

edness between individuals, using the 5591 ‘chromo-

some-assigned’ markers; note that this method is the

same, to a factor of two, as methods commonly used to

calculate identity-by-state (IBS) allele sharing [for exam-

ple, PLINK (Purcell et al. 2007) and GenABEL

(Aulchenko et al. 2007b)]. The matrix G3 was then

weighted by the expected relatedness from the pedigree

following the study by Goddard et al. (2011) to give the

genome-wide relatedness matrix G (Robinson et al.

2013).

Variance components were estimated in a restricted

maximum-likelihood (REML) framework using ASReml

version 3 (Gilmour et al. 2009). Under the null hypothe-

sis of a polygenic model, it was predicted that the total

additive genetic variance is distributed across the chro-

mosomes in the genome according to the gene content

of each chromosome. To test the alternative hypothesis

that a small number of genes account for most of the

genetic variance (i.e. an oligogenic model), it was first

necessary to examine the contributions of each chromo-

some. For every chromosome, four models sets (Robin-

son et al. 2013) were constructed as follows:

1 mixed model with G constructed excluding markers

on that chromosome.

2 mixed model with G constructed excluding markers

on that chromosome, plus G constructed with only

markers on that chromosome.

3 mixed model with G constructed with all markers

4 mixed model with G constructed with all markers,

plus G constructed with only markers on that chro-

mosome.

Subsequently, two likelihood ratio tests were per-

formed.

1 contrast 1: for each autosome, model (ii) was com-

pared with model (i), to test whether the chromo-

some explains any variation in the trait. Across all

chromosomes, the expectation is that there is a posi-

tive linear relationship between the number of genes

and the amount of variance explained per chromo-

some if the trait is polygenic. Given that each vari-

ance component is a point estimate (i.e. it may be

over- or under-estimated, Robinson et al. 2013), the

significance of the relationship is tested by fitting a

linear regression between the number of genes and

the variance explained by each chromosome.

2 contrast 2: for each autosomal chromosome and the

Z chromosome, model (iv) was compared with

model (iii) to test whether there is evidence that the

variance explained by the chromosome is greater

than the amount expected given its size (i.e. gene

content).

The contribution of each chromosome to the overall

phenotypic variance was tested by comparing the log

likelihood of the genome-wide model (model i or iii; L0)

with the log likelihood of the genome-wide plus chro-

mosome model (model ii or iv; L1), with a likelihood

ratio test (LRT);

LRT ¼ �2ðL0 � L1Þ
Under the null hypothesis, the LRT follows a 50:50

distribution of a chi-square test with zero degrees of

freedom (which is a point mass at 0; equivalent to the

Dirac delta function) and a chi-square test with one

degree of freedom. Given the small number of markers

(<60) on some chromosomes, a total of 23 chromosomes

or chromosome sets were constructed; chromosomes

1–15, 17–20, 1A, 4A and Z were each fitted as single

chromosomes, while a chromosome set was obtained by

combining all markers from chromosomes 21–28 and

linkage group LGE422. These regions contained a total

of 15 448 genes predicted from homology with the

zebra finch genome (see K. van Oers, A. W. Santure, I.

De Cauwer, N. E. M. van Bers, R. P. M. A. Crooijmans,

B. C. Sheldon, M. E. Visser, J. Slate & M. A. M. Groe-

nen, in preparation) (Table 1).
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Bivariate analysis

By fitting clutch size and egg mass in a mixed model

jointly, it is possible to estimate both the variance

parameters for each trait and the covariance between

the traits for each random effect. In this way, the total

phenotypic covariance and the polygenic additive

genetic covariance can be partitioned. Components

were estimated in ASReml version 3 using both the

genome-wide relatedness matrix calculated from all

SNPs and using the pedigree.

QTL analysis

A two-step variance components analysis (George et al.

2000) was performed to map the genome locations of

loci contributing to variance in clutch size and egg

mass. Because this approach requires pedigree informa-

tion, only a subsample of genotyped individuals was

used. By including all first- to fourth-degree family

links, 1733 individuals could be linked into a ‘QTL

pedigree’. Of the 1733 genotyped individuals in the

QTL pedigree, a total of 1202 clutch size measurements

were available for 682 females, while for egg mass, 1058

measurements were available for 635 individuals.

Variance components analysis was performed as

described in the study by George et al. (2000) and Slate

(2005), where a mixed linear model was fitted to parti-

tion variance into fixed and random effects. Briefly, this

is a standard animal model (Henderson 1975)

y ¼ Xbþ Zuþ e

where X and Z are incidence matrices relating trait

records to vectors of fixed effects b and random effects

u, respectively, and e is a vector of residual effects.

Variance components were estimated in a restricted

maximum-likelihood (REML) framework using ASReml

version 3. The heritability (h2) is defined as the ratio of

additive genetic (VA) to total phenotypic variance (VP,

the sum of all variance components); h2 = VA/VP.

To test the contribution of a putative QTL effect to

the overall variance in the trait, a second linear mixed

model was fitted, where variance is partitioned as

Table 1 Contributions of individual chromosomes (chr) to heritability (h2) of clutch size (1610 records, 969 individuals) and egg mass

(1424 records, 902 individuals). The likelihood ratio test, LRT1, tests whether the chromosome explains significant variation and can

be used to test whether there is a linear relationship between chromosome size and contribution to overall additive genetic variance

(see Fig. 1). LRT2 tests whether the chromosome contributes more to overall heritability than expected

Chr N markers Length (cM) N Genes† Size (Mbp)†

Clutch size Egg mass

h2 LRT1 LRT2 h2 LRT1 LRT2

1 579 139.9 1254 119.6 0.141 (0.073) 4.512* 1.946 0.118 (0.080) 2.34 0.824

1A 415 93.6 972 73.7 0 0 0 0.075 (0.063) 1.830 0.506

2 700 139.7 1450 156.4 0.078 (0.073) 1.302 0.098 0.194 (0.085) 6.394** 3.054*
3 596 114.9 1290 112.6 0 0 0 0.025 (0.068) 0.148 0

4 356 97.6 811 69.8 0 0 0 0.007 (0.052) 0.022 0

4A 103 59.4 39 20.7 0.019 (0.030) 0.538 0.156 0.022 (0.035) 0.468 0.172

5 346 98.6 998 62.4 0.107 (0.062) 3.140* 1.67 0 0 0

6 177 78.0 596 36.3 0 0 0 0.027 (0.041) 0.542 0.104

7 176 72.6 562 39.8 0.058 (0.043) 2.510 1.35 0.010 (0.038) 0.078 0

8 134 53.8 575 28.0 0.030 (0.039) 0.670 0.262 0.057 (0.044) 2.198 1.380

9 130 54.2 497 27.2 0.024 (0.036) 0.518 0.152 0 0 0

10 148 50.5 444 20.8 0 0 0 0.006 (0.038) 0.032 0

11 135 58.2 397 21.4 0 0 0 0 0 0

12 152 51.9 369 21.6 0.109 (0.048) 8.270** 6.200** 0 0 0

13 117 40.9 379 17.0 0.028 (0.034) 0.930 0.392 0 0 0

14 126 49.2 426 16.4 0 0 0 0.019 (0.037) 0.304 0.060

15 173 49.1 381 14.4 0 0 0 0.015 (0.042) 0.138 0

17 96 45.4 336 11.6 0 0 0 0 0 0

18 93 49.9 334 11.2 0.004 (0.030) 0.018 0 0 0 0

19 97 49.4 348 11.6 0.011 (0.033) 0.104 0.006 0 0 0

20 155 49.4 356 15.7 0.015 (0.039) 0.146 0.002 0 0 0

Micros 308 411.0 1808 40.2 0.096 (0.061) 2.798* 1.490 0.051 (0.058) 0.906 0.226

Z 279 51.2 826 72.8 – – 0 – – 0

Terms significant at P = 0.05 and P = 0.01 are marked * and **, respectively. Numbers in parentheses are standard errors.
†Predicted from homology with the zebra finch genome.
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y ¼ Xbþ Zuþ Zqþ e

where q is a vector of additive QTL effects. The effect of

the QTL was tested by comparing the log likelihood of

the polygenic model (L0) with the log likelihood of the

polygenic plus QTL model (L1), with a likelihood ratio

test (LRT);

LRT ¼ �2ðL0 � L1Þ
Under the null hypothesis of no QTL, the LRT fol-

lows a 50:50 distribution of a chi-square test with zero

degrees of freedom and a chi-square test with one

degree of freedom. To account for multiple tests

genome-wide, the approach of Lander & Kruglyak

(1995) was used to adjust the significance thresholds

based on the genome size and number of mapped chro-

mosomes. For this data set, a logarithm of odds (LOD)

score [where LOD = LRT/2ln(10)] of 1.620, correspond-

ing to a nominal P-value (P) of 0.003, is expected to

occur once by chance in every genome scan and is

termed ‘genome-wide suggestive linkage’, while a LOD

score of 3.062 (P = 9 9 10�5) is expected with probabil-

ity 0.050 times every time a genome scan is performed

and is termed ‘genome-wide significant linkage’

(Lander & Kruglyak 1995; Nyholt 2000). Nominal signif-

icance (P < 0.050) requires a LOD score of ≥0.588.
To construct the polygenic plus QTL model, it is first

necessary to use markers to estimate IBD (identity by

descent) sharing between all individuals in the pedigree

at each genomic location. The markers were first

screened to remove one marker from each pair of mark-

ers with moderate to high linkage disequilibrium

between them. To do so, the genotypes of all genotyped

individuals were phased into haplotypes for each chro-

mosome using BEAGLE version 3.3 (Browning &

Browning 2007, 2009). For each chromosome, linkage

disequilibrium between all pairs of markers was esti-

mated with the r2 statistic in GOLD (Abecasis & Cook-

son 2000), for further details, see I. De Cauwer, A. W.

Santure, K. van Oers, N. E. M. van Bers, R. P. M. A.

Crooijmans, B. C. Sheldon, M. E. Visser, J. Slate and M.

A. M. Groenen (in preparation). Eighteen marker pairs

were identified with r2 > 0.1, and the marker with the

lowest minor allele frequency from each pair was

excluded.

Using the remaining 1656 markers in the framework

map, the IBD coefficients between all pairs of individu-

als were derived at 1-cM and 5-cM intervals across the

genome using the software LOKI v2.4.5 (Heath 1997;

Heath et al. 1997), with 100 000 iterations for each posi-

tion. For the Z chromosome, the IBD coefficients at

1-cM and 5-cM intervals were calculated using LOKI

after amending the pedigree to remove all mother–

daughter links (because in a ZW sex determination sys-

tem, a daughter cannot inherit the Z chromosomes from

her mother). The amended pedigree was also used in

the estimation of variance components and likelihoods

for the polygenic and QTL models; by including both

the full pedigree and the amended pedigree in Z, vari-

ance was partitioned into polygenic additive genetic

effects on the autosomes plus polygenic additive genetic

effects on the Z chromosome; that is, the models are as

follows:

y ¼ Xbþ Zuþ Z0uþ e

and

y ¼ Xbþ Zuþ Z0uþ Z0qþ e

where Z’ includes the amended pedigree.

Quantitative trait locus scans were performed for

clutch size and for egg mass every 5 cM across the gen-

ome, with neighbourhoods (�5 cM) of nominally signif-

icant QTL peaks scanned at 1-cM intervals for each

trait. Approximate 95% confidence intervals for QTL

peaks were defined by a drop of one in LOD score from

the peak (Lander & Botstein 1989) as well as a more

conservative 1.5-LOD drop. The correspondence

between the genome-wide test statistics obtained from

the clutch size and egg mass QTL scans were tested

using the permutation approach of Keightley & Knott

(1999) (see Appendix S3).

QTL mapping power analysis

Conclusions from the QTL mapping analysis rely on

the power to detect regions of large effect (and hence

the power to reject the hypothesis that traits are influ-

enced by QTL of large effect that fail to reach genome-

wide suggestive or significant linkage). Therefore, a

simulation approach was used to determine the power

to detect QTL explaining 5%, 12.5%, 20% and 35% of

the overall phenotypic variance (Appendix S4).

Genome-wide association study (GWAS)

Genome-wide association studies (GWAS) aim to iden-

tify markers that are in strong linkage disequilibrium

with causal variants affecting the trait value. A mixed

model framework can also be used to test the effect of

each SNP marker across the genome

y ¼ Xbþ Zuþ e

where the SNP is fitted as a fixed effect b rather than

fitting a local identity-by-descent (IBD) matrix as a ran-

dom effect in the QTL mixed model. Thus, rather than

partitioning variance due to variation in relatedness

between individuals at a position in the genome,

© 2013 John Wiley & Sons Ltd

3954 A. W. SANTURE ET AL.



association analysis fits the marker itself as a fixed

effect and tests whether different marker alleles cause

differences in the trait mean across individuals (Stinch-

combe & Hoekstra 2008; Slate et al. 2010).

To test the effects of each SNP, a full mixed model

can be run for each marker across the genome. A

quicker alternative is to run a simple mixed model with

SNP information and use the predicted breeding values

(i.e. the predicted additive genetic value) of individuals

as a proxy for the phenotype; this removes all variance

due to fixed and random effects and substantially

reduces the computational time to subsequently analyse

each SNP (Aulchenko et al. 2007a). The simplified

mixed model then fits SNPs as a fixed effect and parti-

tions variance in breeding value into genome-wide

relatedness as a random effect (analogous to the

polygenic effect in QTL mapping). Fitting the marker-

based genome-wide relatedness between individuals

controls for similarity in phenotypes of related individ-

uals due to overall genome sharing caused by popula-

tion substructure (Amin et al. 2007).

ASReml version 3 was run to fit the initial mixed

model in order to predict breeding values for the 969

and 902 genotyped females with clutch size and egg

mass measurements. A number of these females had no

known pedigree links with other genotyped individu-

als; therefore, rather than fitting the matrix of pedigree

relatedness in the mixed model to account for the poly-

genic additive effect, the matrix of genome-wide relat-

edness was fitted, calculated using the approach

outlined in the study by Robinson et al. (2013). SNPs

were tested for allelic association with egg mass and

clutch size breeding values using the ‘polygenic’ and

‘mmscore’ functions in GenABEL (Aulchenko et al.

2007b), adjusting for population stratification by fitting

the internally calculated genome-wide kinship matrix

(this kinship matrix is identical to G3, except for a fac-

tor of two). The significance of the fixed SNP effects

was tested by extracting the P-values from the test for

allelic association between SNP and trait with one

degree of freedom in GenABEL, where the statistic is

corrected for population stratification. The significance

threshold was further adjusted for multiple testing by

calculating the effective number of genome-wide tests,

taking into account linkage disequilibrium between

markers in the package Keffective (Moskvina & Schmidt

2008); for the panel of 5591 chromosome-assigned SNPs,

the effective number of tests is 5573. For a significance

threshold of 0.050, this gives a genome-wide significant

value of P = 9.0 9 10�6.

It is known that breeding values should be used with

caution, particularly in situations where the response to

selection is being predicted, or when the relationship

between breeding values and fitness is estimated (Post-

ma 2006; Hadfield et al. 2010). To test whether using

breeding values influenced the results of the GWAS,

full mixed models were also fitted for each SNP. GenA-

BEL is not able to incorporate repeated measures; there-

fore, two sets of models were run for each trait: (i) the

nesting event of a female in her first year and (ii) a

randomly selected nesting event of female from her sec-

ond and subsequent years. Further details are provided

in Appendix S5.

Concordance between chromosome partitioning and
GWAS results, and QTL mapping

The three approaches described above exploit slightly

different marker and phenotype information. QTL map-

ping relies on recombination events within families to

define the ‘boundaries’ around a causal locus. Both

chromosome partitioning and GWAS mapping exploit

ancestral recombination events in the population, which

have broken down associations between markers and

phenotype for all loci except those in close physical

linkage to causal loci. Because the power to detect QTL

is dependent on their magnitude (Lynch & Walsh 1998;

Sham et al. 2000) and the power of GWAS and chromo-

some partitioning is additionally dependent on the

amount of LD between causal variants and the markers

(Pritchard & Przeworski 2001), a genome scan may not

detect true QTL of small to moderate effect because

they fail to reach suggestive or genome-wide signifi-

cance. However, concordance of nominally significant

regions of the genome across QTL mapping and the

GWAS scan and/or chromosome partitioning approach

may provide some independent support for a putative

QTL at that location. In particular, it is expected that

the overall variance explained by a chromosome should

scale with the sum of GWAS SNP effects across that

chromosome.

The concordance between the analyses was tested in

a number of ways for each trait. First, the concordance

of effect size estimates and chromosomes contributing

to overall variance in the chromosome partitioning

approach was verified by calculating the correlation

between the summed GWAS effect size estimates and

the amount of variance explained by each chromosome.

The significance of the correlation was tested by

permuting SNPs across the genome 2000 times to give a

null distribution of summed effects for each chromo-

some.

The concordance between results from QTL mapping

with the GWAS and chromosome partitioning results

was tested in three ways. First, the LOD score at the

mapping position (in cM) of each SNP marker was

predicted from a linear regression of the LOD scores of

neighbouring QTL positions (for example, LOD scores
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at 4 cM and 5 cM were used to predict the LOD score

of a SNP mapped to 4.6 cM), and the P-value for each

inferred LOD score was calculated and compared with

the P-value from the GWAS. To determine whether the

number of autosomal positions nominally significant in

both analyses was greater than expected, the observed

and expected counts were compared with a chi-square

test. Second, a chi-square test was used to test whether

autosomes with nominally significant QTL peaks were

more likely to contain SNPs that reached nominal

significance in the GWAS. Finally, those chromosomes

with nominally significant (P < 0.05) QTL peaks were

compared with the nominally significant chromosomes

from the partitioning approach with a Fisher’s exact test

(i.e. with counts of nominal significance in both, one or

neither approach).

Results

Partitioning genetic variation across chromosomes

The variance component partitioning of clutch size and

egg mass using the genome-wide relatedness matrix

calculated from all SNPs gave a heritability of 0.42 [stan-

dard error (SE) = 0.08] for clutch size and 0.42 (0.04) for

egg mass, in broad agreement with previous work using

‘classical’ quantitative genetic methods using a social

pedigree (McCleery et al. 2004; Quinn et al. 2006; Garant

et al. 2008). The nest box and the permanent environment

component contributed some variation for clutch size,

but very little for egg mass (Table 2).

For both traits, there was a significantly positive rela-

tionship between the variance explained and the

predicted size (in bp) of each chromosome (for clutch

size: slope = 4.705 9 10�10, R2 = 0.182, P = 0.048 (Spear-

man rank correlation = 0.316, P = 0.076); for egg mass:

slope = 9.402 9 10�10, R2 = 0.637, P = 0.000 (Spearman

rank correlation = 0.577, P = 0.002, Fig. 1) (contrast 1, see

Methods). Chromosome length (cM) and number of

genes have a correlation of 0.810, and the number of

markers, number of genes and chromosome size (bp) are

also all highly correlated (r = 0.774–0.975, see Table 1).

For clutch size, the number of genes (slope =
5.168 9 10�5, R2 = 0.270, P = 0.013) and chromosome

length (slope = 2.691 9 10�4, R2 = 0.227, P = 0.013) were

the best predictors of variance explained. For egg mass,

chromosome size and the number of markers

(slope = 1.653 9 10�4, R2 = 0.651, P = 0.000) were the

best predictors of variance explained.

Chromosomes 12 and 2 contributed significantly more

than expected from their size to clutch size and egg

mass additive genetic variation, respectively (Table 1,

LRT2, see Methods). A number of chromosomes did not

contribute significantly greater than zero genetic vari-

ance (Table 1). Markers on the Z chromosome did not

explain any additional variance in clutch size or egg

mass (variance contributed from Z chromosome markers

was 0 for both traits), giving the same likelihood and the

same variance component partitioning as a model fitting

all autosomal markers (LRT2, see Methods).

QTL analysis

For clutch size, no regions of the genome were genome-

wide significant. One region of the genome reached

genome-wide suggestive linkage (LOD score = 2.01,

P = 0.001) on chromosome 20 at 6 cM. The one-LOD

drop interval was between 2.77 and 11.39 cM, while a

more conservative 1.5-LOD drop gives an interval of

0–22.08 cM. Seven additional regions were nominally

significant (P = 0.050): chromosome 1 at 21 cM, chromo-

some 3 at 0 cM, chromosome 12 at 45 cM, chromosome

19 at 8 cM, chromosome 19 at 35 cM, chromosome 20 at

19 cM and chromosome 20 at 25 cM (Fig. 2).

No regions of the genome reached genome-wide sug-

gestive or significant linkage for egg mass. There were

seven nominally significant peaks on chromosome 1A at

0 cM, chromosome 1A at 12 cM, chromosome 4 at

14 cM, chromosome 8 at 10 cM, chromosome 22 at 2 cM,

chromosome 25B at 0 cM and chromosome 26 at 37 cM

(Fig. 2).

There was no overlap of suggestive or nominally sig-

nificant QTL peaks for clutch size and egg mass or evi-

dence of any correspondence between the test statistics

obtained from the two QTL scans [correlation = �0.072,

tested using the approach of Keightley & Knott (1999),

see Appendix S3].

QTL mapping power analysis

The results of the simulations indicate very low power to

detect QTL of even moderate effect, suggesting that the

data sets do not allow reliable identification of QTL for

clutch size and egg mass (Appendix S4).

Table 2 Proportion of variance explained of random effects in

models of clutch size (1610 records, 969 individuals) and egg

mass (1424 records, 902 individuals) using the full marker set

of 5591 SNPs (see ‘partitioning genetic variation across chro-

mosomes’)

Term Clutch size Egg mass

Nest box 0.034 (0.027) 0

Additive genetic 0.423(0.079)** 0.424 (0.036)**
Permanent environment 0.016 (0.076) 0

Residual 0.527 (0.039) 0.576 (0.036)

**Terms significant at P < 0.01. Numbers in parentheses are

standard errors.
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Bivariate analysis

The total phenotypic correlation between the traits

was �0.064 (0.035) (Table 3). The additive genetic

correlation between the traits was �0.120 (0.089)

and did not differ significantly from zero. Similar

results were apparent when using the genome-wide

relatedness matrix to partition additive genetic vari-

ance and covariance [phenotypic correlation �0.049

(0.030), additive genetic correlation �0.131 (0.074),

Appendix S6].

Given (i) the small and insignificant additive genetic

correlation across the genome, (ii) the absence of
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evidence that any region of the genome contributed to

both traits in the chromosome partitioning analysis

and (iii) no overlap of suggestive or nominally signifi-

cant QTL peaks for clutch size and egg mass, a bivari-

ate QTL scan of the genome was not undertaken.

Running such a model would not have been justified,

because at all positions in the genome, the variance

for at least one trait lacked a QTL, and so the model

would have been attempting to estimate the covariance

between two variance components, at least one of

which was zero.

Genome-wide association study

None of the 5591 SNPs tested for association with

clutch size or egg mass were genome-wide significant

after adjustment to account for population structure (by

fitting genome-wide relatedness between individuals)

and multiple testing (Fig. 2). Accounting for structure,

281 SNPs (5.025%) and 285 SNPs (5.097%) had P-values

<0.050 for clutch size and egg mass, respectively. There

was good agreement between the estimated effect sizes

of nominally significant SNPs whether analysed using

breeding values (see above and Fig. 2) or fitting a

mixed model including standardized trait values and

including all fixed effects while controlling for popula-

tion structure (Appendix S5).

The distribution of the 281 and 285 nominally signifi-

cant SNPs for clutch size and egg mass was random

across the genome; a SNP was no more likely to be

nominally significant if its neighbour was significant

than if its neighbour was not (chi-square test on the

observed and expected counts of neighbouring SNPs,

P = 0.964 for clutch size and P = 0.983 for egg mass),

and there was no evidence for some chromosomes

having more nominally significant SNPs than others

(chi-square test on the observed and expected counts of

nominally significant SNP per chromosome, P = 0.528

for clutch size and P = 0.490 for egg mass). Sixteen

SNPs were nominally significant for both clutch size

and egg mass; this did not differ significantly from the

number expected by chance (chi-square test on the

observed and expected counts of SNPs with zero, one

and two nominally significant peaks for the two traits;

P = 0.897).

Concordance between chromosome partitioning and
GWAS results, and QTL mapping

As expected (given that both approaches exploit LD

using the same markers and individuals), there was a

strong correlation between the GWAS summed effect

sizes and the variance explained in the chromosome

partitioning approach for both traits, and the correla-

tions were stronger than expected from a random

genome distribution of observed effect sizes (clutch

size: r = 0.490, P = 0.000, egg mass: r = 0.789,

P = 0.031).

There was no evidence that nominally significant

GWAS SNPs colocalized with nominally significant

QTL peaks (chi-square test on the observed and

expected counts of SNPs being nominally significant in

both, one or neither the GWAS and QTL analysis,

P = 0.257 for clutch size and P = 0.930 for egg mass).

Further, it was found that chromosomes with nominally

significant QTL peaks were no more likely to harbour

nominally significant GWAS SNPs (chi-square test on

the observed and expected counts of nominally signifi-

cant GWAS SNPs on chromosomes with and without

nominally significant QTL peaks, P = 0.508 for clutch

size and P = 0.384 for egg mass). The Z chromosome

was not included in these analyses, as the QTL

mapping followed a slightly different model (see Meth-

ods). However, given there were no nominally signifi-

cant peaks on the Z chromosome for either clutch size

or egg mass, including the Z chromosome would not

affect the conclusion that there was no evidence for the

co-occurrence of nominally significant GWAS SNPs and

QTL peaks.

There was no evidence that chromosomes that con-

tributed significantly to overall variance (measured as

the significance of the LRT in contrast 1, see Table 1)

harboured more nominally significant QTL peaks

detected from the QTL mapping approach for either

trait (two-tailed Fisher’s exact test, P = 0.210 for clutch

size, P = 1.000 for egg mass).

Table 3 Proportion of variance explained and covariance partitioning for a bivariate polygenic model (see ‘bivariate analysis’)

including both clutch size (1058 records, 635 individuals) and egg mass (1058 records, 635 individuals), using the pedigree to parti-

tion additive genetic variance and covariance. Numbers in parentheses are standard errors

Term Clutch size Cross-trait covariance Cross-trait correlation Egg mass

Nest box 0.154 (0.042) NA NA 0

Additive genetic 0.404 (0.042) �0.041 (0.031) �0.120 (0.089) 0.396 (0.042)

Permanent environment 0 NA NA 0

Residual 0.442 (0.046) �0.011 (0.023) �0.024 (0.047) 0.604 (0.042)
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Discussion

Three complementary approaches were followed to

study the genetic architecture of clutch size and egg

mass in a wild population of great tits: all three

approaches suggest that these traits have a polygenic

basis, with many loci of small effect contributing to trait

variation. In particular, evidence for a polygenic basis

for clutch size and egg mass is provided by the obser-

vations that (i) for both traits, there was a significant

positive relationship between variance explained and

the size of each chromosome, (ii) there are no genome-

wide significant QTL for clutch size and egg mass, and

no excess of genome-wide suggestive peaks relative to

the null expectation from a genome scan and (iii) none

of the 5591 SNPs tested for association with clutch size

or egg mass were genome-wide significant after adjust-

ment to account for population structure and multiple

testing.

While the above results appear to lend support to a

polygenic basis for both traits, conclusions from these

analyses rely on the power to detect regions of large

effect. The QTL mapping power analysis indicated very

low power to detect QTL of even moderate effect

(Appendix S4), which is a sobering conclusion given

that the number of animals (~650) was quite large, par-

ticularly in comparison with many other QTL studies of

wild animal populations (Slate 2013). However, it is

likely that because clutch size and egg mass are

measured as female traits only, many of the most infor-

mative relationships between close relatives of different

sexes (e.g. brother–sister) are missing, resulting in a sub-

stantial reduction in power.

There is very low linkage disequilibrium between

SNPs in our data set (I. De Cauwer, A. W. Santure, K.

van Oers, N. E. M. van Bers, R. P. M. A. Crooijmans, B.

C. Sheldon, M. E. Visser, J. Slate & M. A. M. Groenen,

in preparation); therefore, the power to detect signifi-

cant association between markers and the traits in a

GWAS is also very low. Robinson et al. (2013) con-

ducted a power analysis for the chromosome partition-

ing approach and concluded from simulations that a

polygenic architecture [simulated as one QTL of very

small effect (mean variance explained = 0.002) every

10 cM] was distinguishable from multigenic [simulated

as one QTL of small effect (mean variance

explained = 0.018) on each of 22 chromosomes] and oli-

gogenic architectures [simulated as five QTL each

explaining 0.08 of phenotypic variance). However, it

should be noted that these simulations were based on a

large sample of 2000 birds, and that the power of the

clutch size and egg mass data sets are likely to be

lower. Given the low power of our study, caution

should be taken not to overinterpret the results. In par-

ticular, there is some support of genes of large effect for

clutch size on chromosome 12 and for egg mass on

chromosome 2 (both chromosomes contributed signifi-

cantly more to overall heritability than expected from

their size, see LRT2, Table 1, and there was a nominally

significant QTL for clutch size on chromosome 12). The

power simulations and the nature of weak LD in the

data set both indicated that (i) we have very low power

to have detected QTL of major effect and (ii) some of

the QTL detected in the genome scan that do not reach

genome-wide suggestive or significant linkage may

nonetheless be real, although it is likely that their effect

sizes are not accurately estimated (see Slate 2013).

Therefore, while these traits are likely to be largely

polygenic, we cannot exclude the possibility that clutch

size and egg mass are also influenced by some genes of

major effect. However, the relationship between chro-

mosome size and proportion of variance explained, and

the failure to find QTL of very large effect would argue

against these traits having an oligogenic architecture,

where just a small number of genes cause all of the

additive genetic variance.

The results indicate that moderate additive genetic var-

iance is present for both clutch size and egg mass. Clutch

size, in particular, is under directional selection in the

population (Garant et al. 2007), and it might be expected

that such selection will erode genetic variation over time.

However, there are a number of reasons to expect that

variation be maintained for traits under selection. First,

and most importantly, the strength and direction of selec-

tion is highly variable both through time and space

(Wilkin et al. 2006; Garant et al. 2007). For example, in

years or environments with limited food availability,

selection might act against alleles that increase clutch

size, while in contrasting years and environments, such

alleles may be favoured – that is, although selection may

remain directional, its strength and sign can change over

time and space. Second, as the traits are probably influ-

enced by many loci, the total mutational input across

these loci is high and is likely to contribute to the overall

variance (Meril€a & Sheldon 1999). Finally, there is a large

amount of immigration into Wytham woods each year

from neighbouring sites, with only around half of breed-

ing adults born in Wytham [see, for example, Verhulst

et al. (1997)]. Such a large input of (potentially

maladapted) alleles into Wytham each year is likely to

overwhelm selection at a local scale (Postma & van

Noordwijk 2005; Star et al. 2008).

The lack of overlap between nominally significant

positions across the genome for clutch size and egg mass,

along with the small and insignificant genetic covariance

between clutch size and egg mass, suggests that within

this population, the evolution of clutch size is unlikely to

be constrained by the genetic architecture of egg mass

© 2013 John Wiley & Sons Ltd

CLUTCH SIZE AND EGG MASS IN GREAT TIT 3959



and vice versa. Thus, the weakly negative genetic covari-

ance between clutch size and egg mass seen in larger

data sets (see Garant et al. 2007, which includes individu-

als genotyped in this analysis), is perhaps transient and,

given no evidence of loci of large effect affecting either

trait, could be contributed by many small local effects

that are distributed genome-wide. Further dissection of

the relationship between these traits will require many

more genotyped individuals and markers to accurately

understand the nature of the genetic covariance.

Although there is a clear negative relationship between

clutch size and egg mass (standardized for body size)

across bird species, such a relationship within species is

less clear and is not necessarily expected given individ-

ual variation in quality and resource allocation to repro-

duction (van Noordwijk & de Jong 1986; Martin et al.

2006). This study demonstrates that, if present at all in

the Wytham great tits, the genetic relationship between

clutch size and egg mass is only weakly negative, and

although there is moderate additive genetic variance for

both traits, ‘individual’ choices of investment in each

reproductive event are probably driven by external envi-

ronmental factors including food availability and indi-

vidual condition.

In summary, this is the first time a genomic and pheno-

typic data set of this scale has been analysed for life his-

tory traits in a wild avian population. In contrast to

studies to date of wild pedigreed populations, which in

many cases have located QTL of very large effect (see

Slate 2013; for a discussion of the potential causes and

robustness of these large effects), a combined approach

of chromosome partitioning, QTL mapping and genome-

wide association has failed to locate any QTLs contribut-

ing significantly to the moderate heritability for these

reproductive traits. Although this finding agrees with

recent conclusions from the analysis of genomic data sets

of human, livestock and model organisms that many

quantitative traits are influenced by a large number of

loci of small effect (Hill et al. 2008; Allen et al. 2010;

Hayes et al. 2010; Yang et al. 2011b), the low power in our

data set suggests that we cannot rule out genes of major

effect contributing to some of the genetic variation in

clutch size or egg mass in the Wytham population. This

analysis demonstrates the value of the long-term study of

pedigreed wild populations such as the Wytham great

tits in understanding the genetic basis of life history trait

evolution, but also serves as a warning that even some of

the longest running studies of pedigreed wild popula-

tions are not enormously powerful for gene mapping.
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